Neural scene representation and rendering

The article was originally published by Deep Mind.

There is more than meets the eye when it comes to how we understand a visual scene: our brains draw on prior knowledge to reason and to make inferences that go far beyond the patterns of light that hit our retinas. For example, when entering a room for the first time, you instantly recognise the items it contains and where they are positioned. If you see three legs of a table, you will infer that there is probably a fourth leg with the same shape and colour hidden from view. Even if you can’t see everything in the room, you’ll likely be able to sketch its layout, or imagine what it looks like from another perspective.


These visual and cognitive tasks are seemingly effortless to humans, but they represent a significant challenge to our artificial systems. Today, state-of-the-art visual recognition systems are trained using large datasets of annotated images produced by humans. Acquiring this data is a costly and time-consuming process, requiring individuals to label every aspect of every object in each scene in the dataset. As a result, often only a small subset of a scene’s overall contents is captured, which limits the artificial vision systems trained on that data. As we develop more complex machines that operate in the real world, we want them to fully understand their surroundings: where is the nearest surface to sit on? What material is the sofa made of? Which light source is creating all the shadows? Where is the light switch likely to be?

In this work, published in Science (Open Access version), we introduce the Generative Query Network (GQN), a framework within which machines learn to perceive their surroundings by training only on data obtained by themselves as they move around scenes. Much like infants and animals, the GQN learns by trying to make sense of its observations of the world around it. In doing so, the GQN learns about plausible scenes and their geometrical properties, without any human labelling of the contents of scenes.

The GQN model is composed of two parts: a representation network and a generation network. The representation network takes the agent's observations as its input and produces a representation (a vector) which describes the underlying scene. The generation network then predicts (‘imagines’) the scene from a previously unobserved viewpoint.


See full article.




MENU
SUPPORT

Email: info@neuralens.io

Phone: +1-628-265-6690

OTHER LINKS

© 2020 Neuralens Technologies, Inc.